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Abstract— With the advent of Deep Learning (DL) al-
gorithms, there has been an increased shift in using these
techniques for Visual Odometry. Numerous supervised, self-
supervised and unsupervised methods have been proposed.
With the recent surge in the use of event-based cameras that
capture high-speed intensity changes as log representations,
it is possible to encode information that is missed by regular
cameras between time steps. Towards this end, we propose
DeepEvent-VO, a fusion-based supervised RCNN model that
learns geometric features between monocular intensity se-
quences across time and fuses features learned from the event-
frames encoded between these time steps, before passing to
LSTMs to learn poses at each time step. To our knowledge,
this is the first attempt in fusing features from both intensity
and event sequences. We explain the architecture in more
detail and show different experiments that we have performed
along with ablation studies using different learning strategies.
From our learnings, we give directions for the future to help
improve the results of this project.

I. INTRODUCTION

Visual odometry (VO), as one of the most essential
techniques for pose estimation and robot localization, has
attracted significant interest in both the computer vision and
robotics communities over the past few decades [1]. It has
been widely applied to various robots as a complement to
GPS, Inertial Navigation System (INS), wheel odometry,
etc.

In the last thirty years, enormous work has been done
to develop an accurate and robust monocular VO system.
As shown in Figure 1, a classic pipeline [1], [2], which
typically consists of camera calibration, feature detec-
tion, feature matching (or tracking), outlier rejection (e.g.,
RANSAC), motion estimation, scale estimation and local
optimization (Bundle Adjustment), has been developed and
broadly recognized as a golden rule to follow. Although
some state-of-the-art algorithms based on this pipeline have
shown excellent performance in terms of accuracy and
robustness, they are usually hard-coded with significant
engineering effort and each module in the pipeline needs
to be carefully designed and fine-tuned to ensure the
performance. Moreover, the monocular VO has to estimate
an absolute scale by using some extra information (e,g., the
height of the camera) or prior knowledge, making it prone
to big drift and more challenging than the stereo VO.

Fig. 1: Conventional framework for Monocular VO

DL has recently been dominating many computer vision
tasks with promising results. Unfortunately, for the VO
problem, this domination has not arrived yet. In fact, there
is limited work on VO, even related to 3D geometry prob-
lems. We presume that this is because most of the existing
DL architectures and pre-trained models are essentially
designed to tackle recognition and classification problems,
which drives deep Convolutional Neural Networks (CNNs)
to extract high-level appearance information from images.
Learning the appearance representation confines the VO to
function only in trained environments and seriously hinders
the popularization of the VO to new scenarios. This is
why the VO algorithms heavily rely on geometric features
rather than appearance ones. Meanwhile, a VO algorithm
ideally should model motion dynamics by examining the
changes and connections on a sequence of images rather
than processing a single image. This implies that we require
sequential learning, which CNNs are inadequate to provide.

By registering changes in log intensity in the image with
microsecond accuracy, event-based cameras offer promising
advantages over frame-based cameras in situations with
factors such as high-speed motions and difficult lighting.
By directly measuring the precise time at which each
pixel changes, the event stream directly encodes fine-grain
motion information. One interesting application of this is
the estimation of optical flow to facilitate the learning of
cues which aid in learning better transformations across
sequences.

In this report, we propose a fusion-based DL architecture
for VO based on Recurrent Convolutional Neural Networks
(RCNNs) [3]. Since it is achieved in an end-to-end manner,
it does not need any module in the classic VO pipeline
(even camera calibration). The main contributions can be
summarized as follows: 1) We demonstrate that the monoc-
ular VO problem can be enhanced with the use of event-
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streams. 2) We show a fusion based strategy that can help
learn good geometrical representations, an inherent need for
the VO pipeline using CNNs. 3) Finally, we show an end-
to-end framework based on RCNNs enabling generalization
to new environments.

The rest of the report is categorized in the following
manner. Section II covers related work in this direction.
Section III describes what event-based time surfaces are.
Section IV describes our model and fusion strategy. Sec-
tion VI shows the results of the models, with and without
fusion and also shows some ablation studies. Section VII
provides future directions for using event streams for VO.

II. RELATED WORK

There has been a surge in using deep learning for Visual
Odometry both using stereo information or monocular RGB
streams and more recently using event streams for 6 DoF
pose estimation. The rest of the section is divided into parts
for DL based VO algorithms using images, using events and
models that work on the fusion of more than two streams.

A. Monocular VO using DL

Monocular based VO has been around for a long time,
mostly using traditional vision techniques in a pipeline as
shown in Figure 1. DeepVO [11], as shown in Figure 2
was one of the first works that extended deep learning
and sequence learning to VO for monocular cameras.
UnDeepVO [15] was an extension of this model, utilizing
disparity from stereo images as a supervisory signal during
training to estimate pose and testing the model directly
on monocular systems. DeMON [16] uses depth as a
supervisory signal and feeds the predicted depth into a pose
CNN to learn the ego-motion of the camera. Zhu et al. [17]
propose a hybrid pipeline to use both optical-flow and depth
as supervisory signals to learn good scene information and
then use RANSAC on top of this to learn an inlier mask
and the pose. Most of the work in this field is dominated
by unsupervised methods.

Fig. 2: The architecture for DeepVO. This uses FlowNet
to extract features from two consecutive time step RGB
images and then uses stacked LSTMs to learn the poses.

B. Event-Based Visual Odometry

Event-based camera streams have recently been used for
visual odometry and SLAM. H. Rebecq et. al. [34], and
Mueggler et. al. [35] demonstrated the use of event cameras
for high-speed visual odometry, visual inertial odometry,
and SLAM. Some of the methods include tracking line and
point features, and trajectory alignments based on spline
fitting and smoothing by optimization.

C. Event-Based Deep Learning

One of the main challenges for supervised learning for
events is the lack of labeled data. As a result, many of
the early works on learning with event-based data, such
as Ghoshet al. [20] and Moeys et al. [21], rely on small,
hand-collected datasets.

To address this, recent works have attempted to collect
new datasets of event camera data. Mueggler et al. [22],
provide handheld sequences with ground truth camera pose,
which Nguyen et al. [12] use to train an LSTM network
to predict camera pose. In addition, Zhu et al. [23] provide
flying, driving and handheld sequences with ground truth
camera pose and depth maps, and Binas et al. [24] provide
long driving sequences with ground truth measurements
from the vehicle such as steering angle and GPS position.

Another approach has been to generate event-based
equivalents of existing image-based datasets by recording
images from these datasets from an event-based camera
(Orchard et al. [25], Hu et al. [26]). Recently, there have
also been implementations of neural networks on spiking
neuromorphic processors, such as in Amir et al. [33], where
a network is adapted to the TrueNorth chip to perform
gesture recognition.

In the space of SFM and visual odometry, Kim et al. [27]
demonstrate that a Kalman filter can reconstruct the pose
of the camera and a local map. Rebecq et al. [28] similarly
build a 3D map, which they localize from using the events.
Zhu et al. [29] use an EM-based feature tracking method to
perform visual-inertial odometry, while Rebecq et al. [30]
use motion compensation to deblur the event image, and run
standard image-based feature tracking to perform visual-
inertial odometry. There has also been work by Zhu et
al. [31] on using depth as a supervisory signal for learning
ego-motion from event streams in an unsupervised way.

D. Fusion Models for VO

Most of the work for VO using fusion based strategies
have focused on fusing the IMU and image streams for
Visual-Inertial Odometry. VINet [19] uses the correlation
version of FlowNet [6] to compose image features across
time and then runs the IMU data through an FC layer
followed by LSTM layers, before fusing (simple concate-
nation) them and estimating the pose at time t. Shamwell
et al. [18] propose learning an affine representation for the
IMU data across time and use this with the learned depth
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from monocular images to estimate the pose of the camera.
To the best of our knowledge, this is the first work that fuses
event and intensity based streams for VO.

III. EVENT REPRESENTATION

An event-based camera tracks changes in the log inten-
sity of an image and returns an event where the log intensity
changes over a set threshold θ

log(It+1)− log(It)≥ θ (1)

Each event contains the pixel location of the change, the
timestamp of the event and the polarity, as below

e = {x, t, p} (2)

Because of the asynchronous nature of the events, it is
not immediately clear what representation of the events
should be used in the standard convolutional neural network
architecture. Most modern network architectures expect
image-like inputs, with a fixed, relatively low, number of
channels (recurrent networks excluded) and spatial cor-
relations between neighboring pixels. Therefore, a good
representation is key to fully take advantage of existing
networks while summarizing the necessary information
from the event stream.

In this work, we chose to use a representation of the
events in image form. The input to the network is a 4 chan-
nel image with the same resolution as the camera. The first
two channels encode the number of positive and negative
events that have occurred at each pixel, respectively. This
counting of events is a common method for visualizing the
event stream, and has been shown in Nguyen et al. [12] to
be informative in a learning-based framework to regress 6
DoF pose.

However, the number of events alone discards valuable
information in the timestamps that encode information
about the motion in the image. To tackle this, we encode the
pixels in the last two channels as the timestamp of the most
recent positive and negative event at that pixel, respectively.
This is similar to the Event-based Time Surfaces used in
Lagorce et al. [13] and the “time stamp images” used in
Park et al. [14]. An example of this kind of image can
be found in Figure 3, where we can see that the flow is
evident by following the gradient in the image, particularly
for closer (faster moving) objects.

While this representation inherently discards all of the
timestamps but the most recent at each pixel, we have ob-
served that this representation is sufficient for the network
to estimate the correct flow in most regions. One deficiency
of this representation is that areas with very dense events
and large motion will have all pixels overridden by very
recent events with very similar timestamps. However, this
problem can be avoided by choosing smaller time windows,
thereby reducing the magnitude of the motion.

Fig. 3: Example of a timestamp image. Left: Grayscale out-
put. Right: Timestamp image, where each pixel represents
the timestamp of the most recent event. Brighter is more
recent.

In addition, we normalize the timestamp images by the
size of the time window for the image, so that the maximum
value in the last two channels is 1. This has the effect
of both scaling the timestamps to be on the same order
of magnitude as the event counts, and ensuring that fast
motions with a small time window and slow motions with
a large time window that generate similar displacements
have similar inputs to the network.

IV. DEEPEVENT-VO

In this section, the deep RCNN framework with the
fusion strategy realizing VO in an end-to-end fashion is
described in detail. It is mainly composed of CNN based
feature extraction, feature fusion and RNN based sequential
modeling.

A. Architecture of Proposed Model

Most of the current state-of-art CNN architectures, such
as VGGNet [4] and GoogLeNet [5] are designed to learn
knowledge from appearance and image context. However,
these do not serve as good priors for VO, which requires
geometric representations. These representations help to
derive connections among consecutive image frames, e.g,
motion models since VO systems evolve over time and
operate on image sequences acquired during movement.

The architecture of the proposed end-to-end VO sys-
tem is shown in Figure 4, which builds on top of the
DeepVO [11] architecture as shown in Figure 2. It takes
in a video clip or a monocular image sequence with
the delta event-frames between the time frames as input.
At each time step, two consecutive images are stacked
together to form a tensor for the deep RCNN to learn
how to extract motion information and estimate poses.
Features are extracted using the model shown in Figure 5
for both intensity and event streams and fused using two
conv layers. This fused feature is then passed through an
LSTM for sequential learning. Each image pair and event-
frame yields a pose estimate at each time step through the
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network. The VO system develops over time and estimate
new poses as images and events are captured.

Fig. 4: Our proposed fusion model. This builds on top on
DeepVO which can be seen in Figure 8a. Here we utilize
two convolutional layers for feature fusion.

The advantage of the RCNN based architecture is to
allow simultaneous feature extraction and sequential mod-
eling of VO through the combination of CNN and RNN.
More details are given in the sequential sections.

B. CNN Based Feature Extraction

As stated above, we need to learn features that are
inherently geometric in nature to facilitate generalization
over all possible sequences. Optical Flow across different
time steps is one such representation that is very effective.
To this end, we adopt the model from [6]. The model image
is shown in Figure 5.

The intensity images and the event streams are both
passed through this model and the resulting features are
then concatenated along the channel dimension and passed
through two convolutional layers whose configuration is
outlined in Table I. The features fused through are passed
to the RNN for sequential learning.

Layer Receptive
Field Padding Stride # Channels

Conv1 3x3 1 1 1024
Conv2 3x3 1 1 1024

TABLE I: Fusion Layers for Features

C. RNN Based Sequential Modeling

To model dynamics and relations among sequences of
CNN features, we use a deep RNN for sequential learning.
Since RNNs model dependencies of sequences, they are
well suited to the VO problem which involves a tem-
poral model (motion model) and sequential data (image
sequence). RNNs learn better from intermediate represen-
tations such as those generated using the proposed CNN
architecture.

RNNs maintain the memory of its hidden states over time
and has feedback loops among them, enabling the current

hidden state to be a function of previous ones. This enables
the RNN to find out connections among the input and
previous states in the sequence. Theoretically, RNNs should
learn from sequences of arbitrary lengths, but in practice,
they suffer from the vanishing gradient problem [8].

Long Short-Term Memory (LSTMs) are capable of learn-
ing long dependencies by introducing memory gates and
units [9]. It explicitly determines which previous hidden
states to be discarded or retained for updating the current
state, is expected to learn the motion during pose estima-
tion. An example of an LSTM is shown in Fig. 6.

Given the input xk at time k and the hidden state hk−1
and the memory cell ck−1 of the previous LSTM unit, the
LSTM updates at time step k according to

ik = σ (Wxixk +Whihk−1 +bi)

fk = σ
(
Wx f xk +Wh f hk−1 +b f

)
gk = tanh

(
Wxgxk +Whghk−1 +bg

)
ck = fk� ck−1 + ik�gk

ok = σ (Wxoxk +Whohk−1 +bo)

hk = ok� tanh(ck)

(3)

where � is element-wise product of two vectors, σ

is sigmoid non-linearity, tanh is hyperbolic tangent non-
linearity, W terms denote corresponding weight matrices, b
terms denote bias vectors, ik, fk,gk,ck and ok are input gate,
forget gate, input modulation gate, memory cell and output
gate at time k, respectively.

To model high-level representations and model complex
dynamics, two LSTMs are stacked with the hidden states
of an LSTM being the input of the other. In our network,
each of the LSTM layers has 1000 hidden states. The deep-
LSTM outputs a pose estimate at each time step based on
the visual features generated from the CNN.

D. Cost Function and Optimization

The proposed RCNN fusion-based VO system can be
considered to compute the conditional probability of the
poses Yt = (y1, . . . ,yt) given a sequence of the intensity
and event images Xt = (x1, . . . ,xt) up to a time t in the
probabilistic perspective:

p(Yt | Xt) = p(y1, . . . ,yt | x1, . . . ,xt) (4)

The modeling and probabilistic inference are performed
in the deep RCNN. To find the optimal parameters θ

∗ for
the VO, the DNN maximizes (4):

θ
∗ = argmax

θ

p(Yt | Xt ;θ) (5)

To learn the hyperparameters θ of the DNNs, the Eu-
clidean distance between the ground truth pose (pk,ϕk) at
time k and its estimated one (p̂k, ϕ̂k) is minimized. The loss
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Fig. 5: The model for estimating the optical flow from given inputs. For our model, we do not run the refinement step
to extract features.

Fig. 6: Folded and unfolded structure of the LSTM unit.⊙
and

⊕
denote element-wise product and addition of

two vectors, respectively.

function is composed of the Mean Square Error (MSE) of
all positions p and orientations ϕ:

θ∗= argmin
θ

1
N

N

∑
i=1

t

∑
k=1
‖ p̂k−pk‖

2
2 +κ ‖ϕ̂k−ϕk‖

2
2 (6)

where ‖.‖ is 2-norm, κ (100 in experiments) is a scale
factor to balance the weights of positions and orientations,
and N is the number of samples. The orientation ϕ is
represented by Euler angles rather than quaternion since
quaternion is subject to an extra unit contrainst which
hinders the optimization problem of DL. We also find
that in practice using quaternion degrades the orientation
estimate to some extent.

V. LIE GROUPS FOR 3D TRANSFORMATIONS

A. SO(3) Representation

Elements of the 3D representation group, SO(3), are
represented by 3D rotation matrices. Composition and
inversion in the group correspond to matrix multiplication
and inversion. Because rotation matrices are orthogonal,
inversion is equivalent to transposition.

R ∈ SO(3)

R−1 = RT (7)

The Lie algebra, so(3), is the set of 3x3 skew-symmetric
matrices. The generators of so(3) correspond to the deriva-
tives of the rotation around the each of the standard axes,
evaluated at the identity:

G1 =

 0 0 0
0 0 −1
0 1 0

,G2 =

 0 0 1
0 0 0
−1 0 0

 ,

G3 =

 0 −1 0
1 0 0
0 0 0

 (8)

An element of so(3) is then represented as a linear
representation of the generators:

ω ∈ R3

ω1G1 +ω2G2 +ω3G3 ∈ so(3)
(9)

We will simply write ω ∈ so(3) as a 3-vector of the
coefficients, and use ω× to represent the corresponding
skew-symmetric matrix.

B. SO(3) Exponential Maps

The exponential map that takes skew-symmetric matrices
to rotation matrices is simply the matrix exponential over
a linear combination of the generators.

exp(ω×)≡ exp

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


= I+ω×+

1
2!

ω
2
×+

1
3!

ω
3
×+ · · ·

(10)

Writing the terms in pairs, we have:

exp(ω×) = I+
∞

∑
i=0

[
ω2i+1

x

(2i+1)!
+

ω2i+2
x

(2i+2)!

]
(11)

Now we can take advantage of a property of skew-
symmetric matrices:

ω
3
× =−

(
ω

T
ω
)
·ω× (12)

First extend this identity to the general case:

θ
2 ≡ ω

T
ω

ω
2i+1
× = (−1)i

θ
2i

ω×

ω
2i+2
× = (−1)i

θ
2i

ω
2
×

(13)
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Now we can factor the exponential map series and
recognize the Taylor expansions in the coefficients:

exp(ω×) = I+

(
∞

∑
i=0

(−1)iθ 2i

(2i+1)!

)
ω×+

(
∞

∑
i=0

(−1)iθ 2i

(2i+2)!

)
ω

2
×

= I+
(

sinθ

θ

)
ω×+

(
1− cosθ

θ 2

)
ω

2
×

(14)

The above equation is the familiar Rodrigues formula.
The exponential map yields a rotation by θ radians around
the axis given by ω . Practical implementation of the
Rodrigues formula should use the Taylor expansions of the
coefficients of the second and third terms when θ is small.

VI. EXPERIMENTS

A. Dataset & Code

We use the Multi-Vehicle Stereo Event Camera
Dataset [22] for our model training and evaluation. The
data we used for our experiments can be found on Box.
The code can be found on Github and we have submitted a
copy along with the report. Additional instructions related
for running the code can be seen in the README provided
there.

B. Experiments

The dataset consists of 2 outdoor daytime sequences. We
trained on 3400 frames from the first sequence, and 5173
frames from the second sequence. We then tested on 1 test
sequences consisting of 1043 frames. Due to limitations of
the dataset, we faced a shortage in the number of sequences
in comparison to dataset requirements of other end-to-
end sequence-sequence models. All our models have been
written in PyTorch (0.4.1) and Python (3.6). For training,
we used Adam optimizer with a learning rate of 1e-3, β1
value of 0.7, the momentum of 0.9, weight-decay of 5e-
6 and a dropout of 0.5 while training. To facilitate the
learning of LSTM and prevent exploding gradients, we use
a gradient clipping of 20 and set our image height and
width fixed at 256 each. To check how the model learns,
we are plotting the loss in tensorboard, also we are plotting
trajectories after every validation evaluation. For FlowNet,
we are using pre-trained weights from [32].

C. Ablation Studies & Results

To test the model, we set up a DeepVO baseline and
also train our DeepEvent-VO (DEVO) model using both
intensity images and event frames. The results of this can
be seen in Figure 8a and 9a for the DeepVO and fusion
models respectively.

We conducted several ablation studies to see what dif-
ferent components of our models are learning. This type of
study specifically helps us learn which part of the network
is performing well and which parts need more refinement
in terms of learning strategies.

Firstly, we froze the weights of FlowNet for both
DeepVO and DEVO models for the intensity image stream
and then trained on the data. The results of this can be seen
in Figures 8c and 9c for the DeepVO and DEVO models re-
spectively. For the second experiment, we learned a network
from scratch. For this, we also learned a FlowNet based
only intensity images (concatenated 2 channel inputs). The
results of this can be seen in Figures 8b and 9b for the
DeepVO and DEVO models respectively.

The total loss (rotation + translation) of the different
models for both training and validation are shown in
Figure 7a and 7b. One observation we make is that a lower
loss is not indicative of a better model. This may be because
the model is stuck in a bad local minimum which may
have lower loss values but has not actually learned good
representations of the data.

From the results, we can see that DEVO outperforms
DeepVO consistently. One thing to notice is that once we
freeze the weights the model performs better, an indicator
that strong priors help the network to learn better and faster.
Also, training from scratch has its own advantages as we
are learning features that are inherent to the intensity and
event streams. These studies lay a foundation for several
future directions discussed in Section VII.

D. Technical Challenges

One of the major challenges that we faced was in terms
of collecting data. Since it is very hard to synchronize pose
messages and event streams, we had to run our rosbags
at 0.05 times the standard rate of play. This resulted in
an increased delay in collecting datasets. Further, unlike
datasets like KITTI, the dataset only consisted of 2 outdoor
day time sequences. This prevented us from further gener-
alizing. Nevertheless, we demonstrate better results for two
variants, as per our ablation study.

Another major challenge was to find sufficient GPU
resources to run our models and also finding sufficient data
to train such a large model. Also, since these models are
black-box in terms of their learning, it is not possible to
debug the different stages independently to facilitate better
learning. A more conceptual challenge was in designing
the model and setting up different ablation environments
for testing the fusion strategy.

E. Timeline Evaluation

We were mostly able to abide by the provided timeline
in the initial proposal. One section that took more time
than anticipated was getting all the data aligned correctly
as described above. Hence, we were not able to experiment
as much as we wanted with different fusion strategies or
models, given other constraints.

VII. CONCLUSIONS AND FUTURE WORK

In this report, we have shown a simple fusion strat-
egy for event-based streams and intensity images. To our
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(a) Train Loss (b) Validation Loss

Fig. 7: Train and Validation loss for DEVO (orange), DeepVO (dark blue), DEVO freeze (light blue), DeepVO freeze
(red), DEVO scratch (green) and DeepVO scratch (pink). Best viewed in color.

(a) DeepVO (b) DeepVO-Scratch (c) DeepVO-Freeze

(a) DEVO (b) DEVO-Scratch (c) DEVO-Freeze

Fig. 9: Ablation Study Performed over multiple variations and experiments. Figure (c) on row 2 of the figure was found
to be the best performing variant. This can be denoted to the fact that the gradients are only propagated over the event
branch and aggregation module of the network. As a result, the event branch tries to create a similar representation for
flow, resulting in a better trajectory output as compared to its other counterparts. All our results are compared at the 31st
epoch of validation. Further, these are not aligned trajectories and purely the output of the network at test time. Here,
green is the ground-truth and red is the predicted trajectory. Best viewed in color.

knowledge, this is the first model of its type to fuse event
and image streams for end-to-end VO. We have performed
ablation studies using different strategies on the proposed
model.

One of the biggest drawbacks of the current method is
that it is a supervised algorithm, hence it faces a data crunch
like most deep learning algorithms. To align with the trend
in the community, in the future, we propose trying out self-
supervised or unsupervised strategies and also incorporating
full stereo information to get rid of the many potential
problems in monocular streams. Also, currently, we feel

that the network for learning the event-based geometric
features are over-parameterized. One other direction for us
to think about is the use of different fusion strategies, as
we propose a very simple method.
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